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Preparec¢ by!

Arnold N. Lowan
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ABSTRACT: The object of the present paper is the derivation of the solutioms
of the problems in heat conduction in the following domaine:

L, cefined by - o2 < x < oo C =y =2

E' Dz' defined by N e x < = 3 0 = y = i
D3'definedby-ao<x<x;-w<# = 2 , Os}sa.
1 ' D;definedby - < X < 00 (0 = o< e C = 3 = &
A DBmdefined by - C <« x < 00 ; D =y <o » ( =< i o= 5
o
. Djdefinedby OS‘(:_’-'a;Ost}*skf' P < 3 < oo

4

D3defihedby C = x = a i 0 =2y

(A
&
O

= 3 = e

In the absence of a better term the above domains which extend to infinity in
certain directions but remain bounded in other directions have been celled
quasi-infinite. -
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White Oak, Marylaend
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This report ocontains a method for the calculation of temperatures in certain
quasi-infinite two and three dimensional domains, It is applicable to the
solution of some types of heat transfer problems. The results are distributed
to ocutside research laboratories for information, and for use in the solution
of problems in heat conduction. This work was sponsored bty the Office of Naval
Research, project mumber NR-044-003, entitled "Numerical Analysis.® Wkg?
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Part I, Heat conduct in the domain D
Section I. Bounderies kept at prescribed temperatures.

It cbviously suffices to consider the case when the temperature is prescribed
on one of the boundaries, say y=0, the other boundary being kert at 0°C,

Accordingly the mathematical formulation of the problem is &s follows:

{3t -4lsp vyl Ty = o @
;t&}mAT(x,y',i) = flx,y) (2)

T: 4
" T(x,0;1) = ¢lx1) (3)
i Tix,2:8 =@ " (4)

To =olve the system T we put

T(X,y;t) = u.f;‘-',y;t) + /U'(x"?;[) (5)

vhere w(x,y;?) and ~-(x,y;t) satisfy the differential equation
{1) and the following initial and boundery conditions

Kim wlx, y;7) = O (6)
't-»o

w2, 0;1) = glx;t) (7)

wix,a;t) = 0 (8)

;t:t_’/?éu /U’(X,?j;t) = ;‘(K,l}) (9)

w (x,0:t) = O (10)

o (%,a:1) = 0 (11)
Derivation of solutiop u(x,y:t)

The Leplace transform

, : - 4t
uf(x,y;#) = X{U-(X,g;t)} : / e wix,y;t)dt
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must saticfy the systew

[ 3% ‘ai,"'*ﬁ—) N (12)
u'ix,(%lu 2 ogixsp) = Xigla;th} (13)
uix,a;6) = 0 . (2)
The expression
w{‘,l’;f’} . _ﬁn_/c/«d“/-:,@-(g;#), /u:w/‘féi-g)_
(15)

~x4ma(x-§)d§

vhere 4 = ,/{— ca 18 readily seen to satisfy the last three equations.

If we put

T o0 Iy,
A -1 VYat = 2 ;] (16)
/° e / ( 1/ 14 )‘x dLr.A’,/ia_

then (15) yields:

w [ x, l';l) = n;/’mda_ [“,'m e (x-€)dE
) (a7)

¢

/
"ol ¥yt «) ol

In order to evaluate the function Y (77; {, o) ve essociate with (16) the
integral equation

T et acnh g (a-y)
-1) dt = =2 & . {18
vhere 4 = J .f— . Since (18) must be an identity in p, we may replace

p by p r S’ 3 then (18) beocomes

o _pt ALt :
e Lo l)dt = acrh B (a-y)
/‘ © (t(? : ant fa
vhence
-
Vipta) = e $lye) . (29)
2

S
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Substituting (19) in (17) and maldng use of the identity

[T - N = - Lot (20)
e e (0 -5)oa = — - =
I P T
(See [1] , p. 1)
ve get
i - = i.:'_;;' 1
b - ———— ! ) T3 /, ;. - d [
SOt s g e T U B Byl @)

From (18), the Inversion Theorem yiclds

& ¢ v

.t = ! ". Ah/{ry,(').-?) - (22)
¢ (‘t’ ) ine * -sem = J/.A.I(,/‘ a. dA
vhere ;. = \/ % , and o0~ 18 ciosen so0 that the poles of the integrand are

to the J;ott of the 1line o~ - ... S e s

(See [ 2] , p.T1)

It may be verified ihat

[Fu) = le

acnh g G-y
Aww{/u.a,

< C R’-R (23)

vhere A:Re", -vrsesn°, ~ > R, where R C and k

are constants and X > 0 . Under these conditions, it is known that
@(y;t) becomes equal to the sum of residues at the poles of F(A),
(See avove reference p. 7€)

We thus obtain

()
" _ Ax'n't
$ly:t) - —’LA-‘O. -zm aon Tt C

*Numbers in square btrackets refer to items listed in. the bihliography.
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In view of (24), (21) becomes:

w {x,y;0) = —L‘f— iﬁ» s DRy

”~vy u.él' “'r (25)
- ¢ . " -Al:.'i._
/ de [ e P5ET) e dT .

In the vpecial case wvhen ¢ 1s independent of x so that our problem becomes
one-dimensional, bearing in aind the identity

) - I
T ELYS /_..‘2

(This gollova by an obvious transformation from the known identity
L e du = J 7 ) equation (25) becomes

d§ = (26)

a0 - . n _&a"n‘r
wly;t) = -—‘J—'— z m -"’—’é#- /° glt-1) e a1 (27)

A

in agreement with the reruit given by Carslaw { 1} p. 180 ¢
Rerivation of soluidon vix,y;t) .

The Laplace transform ~-“(x,y;4) of v(x,y;t) must satisfy the following
differential equation and boundary conditions:

o(.s%‘r * E?;.r —%) Af.(x,'j,'#) = -—i—;(x,y) (m)
v x, 0;4) = v (x,a;p6) =0 . (29)

In viev of the fdmtity
d(x,y) = ..'_.!’T /ll dgdyl[/'é(g,r)) «wovsa (x-E) cesplysn) dadp (30)

it follown that

wtix,yip) - ‘;'?Z/é(§,'ud§dq coveln ) By Tyl g, 4p (B

R(xbsp’)+

e




|
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|
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will satisfy (28) and (29), provided thet

c#(x,yb?m,a,’ : v'(x;z,) ' 0 < y = a
(32)
. q>(x,-3+)ma) zo-f i,y tm T2 L2 03 . teo,
From (31) it follows that
- ’ 3 «2 -R(K"ﬂ')t ®
Ly t) s S ff b aven [l e
- 0 (33)
CAOY o (K-E mﬁ(?”?) dadf .
In view of (32) and (20), (33) becomes
, - - L
v (x,y;T) = FF ,./ flg,n) e d?
/‘ I by '":. - - _'__‘_or';:wml’ (31‘)
'/.IZ[e - e ”dq.
From the identity
T remeiawr S
’e ~r - e
- ‘L“ - = . JQ—T— (35)

by some obvious trinsforuations we obtain the identities:

A ““?"I‘“. . ﬁ.'q'.t (36)
o =i4L]!{I’ZZP e m"‘"(, 1))}
yg et - At (36')
Z- _["az{/fzze - A,oom&m(t,—q)}‘

,

In view of (36) and (36'), (34) becomes

. ’M. 'r
vlx,y;t) = ——_’_zm}n ARy &
’ ’ a nét ~ri a
- , (37)
- -#" ‘
, / € d¢ / f-(E,-q) scn -”—‘Ma dn
. A
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In the special case when f(x,y) becomes a function of y only (37) becomes in
view of (26)

o= Q _".".
syt s ) e 22| e 2R e T i dn (38)
L .

in agreement with the result given by Carslaw {1}, p. 180 .

In conclusion, the final solution of the system T is given by (5) in conjunction
vith (25) and (37).

Section 2.

Boundary y=O kept at temperature 4 (x:t) ; temperature gradient y, ( «; )
prescribed on y=a. Initial temperature f(x,y).

In this case we put

T (., *’;{l = u..(x,'#;f) tow,x gt e byt (39)
vhere «,, w, and 2 satisfy the differentiul equavion (1) ard where
o&/‘"\‘u’(x;”'l) & 0 (40)
t s0
w (%, 0;1) = @ix;1) (1)
-a%-u,‘n'x,!,;f) = 0 for y T e (42)
i oz’c.r" :L‘(x’v’;t) = A (‘3)
t»0
) w (x,0;0) = ¢ (44)
%w‘(,\.";l,} £ (c,(x:t:' fer l}:LL (45)
»?‘:;vv(x,y,'f) s {(A,g) (46)
v lx,6;t) = 0 (47)
3%; i, ?;t ) = 0 for y:=a . .(48)
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Derivation of solution w,(x,¥;t)

The Laplace transform .u:{ x,y;p) of wu,(x,y;t} s given by

’ W (x,y34) = —,!;/-dcx[ , (§i4) Lol e y)  ooatn EVOE  129)

<ok [Sa

vhere 4 = ./ % + o o From (49) it follows that

oo 00

r ¢ )
w,{x,y; 1) = 7;-/{ aa/ <oy .x().--'?;)dg/{ pEt-T) Wy T, =) dT (50)
where
Z gt : 3 woei B (a-y)
3 ( -1 u)d't = 4 ¥/
/, % LB GRS <ok Ba

By enalogy with the developments in Section 1 we have
-Ra't
Yly;t, =) = o $ly;t) (51)

vhere

-4t <oehala-y)
a & t = o 2 ¥
/" (P(y,t)d :zﬁ'i:

[
- . =
vhere g - 1/—%- . Moreover, as in Section 1, the value of ¢ (y;t) is

obtained as the sum of the residues of

T At ceouhgla-y)
F(%} == 2 ,_/,0‘0‘4’?&

vhere g = 4/ —f— . Thus we ultimately obtain

o Rams )n't
_ R / . 2mri) s = zv:\: % (
é(?;t) s [2m+1) aum la e . 52)

In view of (51), (52) and (20), (50) becomes

w eyt a _-_fozumn; ain Limetiny )

» e . (53)
- t 2, _‘_'JJMT:,'M
[ae Foprge-uoct g dr .

omdeigl

R L
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In the special case vhere the fumction %, 1s independent of x , equation
(53) reduces to :

u.'(,;f’ = %‘1 Z“ﬂo/)unﬂ’.-u
av

2a

t A2 l’» (5‘)
/p,{t-‘(} e = a1 .
4

Derivation of solutien w,(x,y;t)

The counterpert of (50) is

» ., - . :
Cuy (xyipic ;[“[,r. (5;,&/7% . wos « (x-§)df (55)
vhere - ,/f., =" , Whenoe
u.‘(x,y,;f) 2 ;,L/o:‘/:ota (x-€) d{/tﬂ(f;l-” ¥ {".t,.z)d‘[ (56)
where, nov

T gt and Ly
&) dt = =Lk
/‘ e 1!’ (9: > ) ﬁu‘»ﬁﬂa
Proceeding as in the previous ceses, ve have
¥lpt=)= &7 Bty (57)

whare the expression for ¢ (y;t) is obtained as the sum of residues of
F(4) - e“}%}f

at its poles. Thus we finally get

4_ 3
~ps

. - - AL 2 nel
elpt) = 1—.‘;1-0 e ‘ ‘“‘p—zg"' . (58)

In viev of (58), (57), and (20), (56) becomes

-u.‘ (x.’;()r Jﬂ-éi(_,)‘ PN 2,..':}”
> g ey meet J
LA 5 et Wioe R g OO

-t e———y

e e—ri e
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In tbe special cese vhere j, is independent of x equation (59) in view of
(26) becomes .

w [y-t)z X2 S () s Bmrtlry
2V Y " e
-0

: ey (60)
/;o.(t ] ©odro.

Derivation of solution ¥x.¥;t)

The solution v(x,y;t) s a 'y identical with iae solutiom of the problem of
heat conduction in a slab ox :‘ckneas 23, whote bounding planes are kept at

0°C, initially at a temperstwe ¢ (x,y) deficed by
¢(x,7):f(i.}’ for 6 <y o
é(x’la-,): f(x,,) f‘n @<y <2a
This leeds to

)-:

/ dmet)w
'\f(x”,f) a)/"——(-.z.. L———#

.’/.:“-‘i‘f’“dg/‘wg,,,) sin Unednr g (&)

e

When the initial temperature is independent of x, the last equation with the
aid of (26) becomes

.QoefaAL st
"’{‘};t)’ %_ z o 2 1w = rg /‘{{,’)MQ_‘_;gl" d'} . (62)

2a
-

The result in (62) is nﬁt given by Carslav; it may howsver be derived from his
solution *u* and it is found to agree with (62).

In conoclusion, the final solution of our prssert problem iz givem by (39) in
conjumetion with (53), (59), and (61). When the boundary y=a is impervious to

heat, « (x y;t) =0 and Tlx,yiU) = wix,y;t) <« u s, y;t) .-

Seotion 3.

Badiation at the bouxiary y=0 into a medium at temperature g (x;1) H
b?nd;ryy-ahptatth_omtm @ (x;t] o Initial temperature
£(x,y).




IR, WY Sy e T

o iy
Bres o addsal T

" 1t vill be noted that the initial and boundary condi
‘are similar to those satisfied by
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In this case we put

6
T(X,’;t) T w, (x,y,‘f) + w‘(x‘»’;l) s, {x yt) e /V"(x,’,-t) (63)

vhere u, , u, , o, and s, are solutions of (1) satisfying the fallowing
initial bounda:y oconditionss

&cku,(!,,;l) = 0

te0

FrAS AL TAZARE S IR S A

“(x,a;t)=0

Lo win, y;0) = 0

Dl : . %
(,, A)u,le,y;t) =0 g y=0

w, {2, a;t) - glxt)

Kem a; (2, y;t) = {(x,y)

20

f’;nr,(t.};f” 0 ﬁt,:O

wv(x,a;t)=0

P w,(x,y;t) =2 0

¢t»>0

(;; R)ailx,git) = R (x,051)  gor 20

v x,a;t) =0

In the special case vhere o (x;1) = 0' , 1.e. vhen raulation takes place

at y=O into a mediwm at 0°C, it 1s clear that ..‘(:,J;t).-eo. Nevertheless,
ons

satisfied by w, (x,y;t)
w, (x,y;t) « Thus the formal solution

w,(x,3i¢) for ¢ (x;t)#0 - 4s necessary for obtaining ~, (x.y;t)

‘ even in the special cese where radiation at y=O takes pisce into a medium at 0°C.

10
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Derivation of solution u (x,¥;t)

The Laplace transform u'(x,y;8) is easily obtained in the form

W gt = & e 97 (5;8) ot reic oy AR R RS
where ﬂ_-'/;,." » vhence

“""‘};”‘;‘9/_::“[ g (5;0-T) $(y;1) at

= aar
./c m‘_(1¢§) dec

- - I'4 ..').
:ﬁ/_,‘f/. e (§1T) ¢lyT): St g

vhere b (y;t) is equal to the sum of the residues of

' sankh g (y-s)
?AM,,a - &4&«[-}‘,

Fig) = e

vhere ¢ = /%' » &t its poles. Ve ultimately obtain

4675 /s

(y;t)= 244 . Cn sen (/%) fn -
il Z[('*AA)-“*C,:J <o G,

vhere the sumation extends over the roots of the transcendental equation
c v C.A wac =0

In view of (65), (64) decomes

ak)ah + T ) 4ee G,

et f S L {
'/dg/,gli;r-r)éuel‘;‘r{ dt

. 1) A% Co aon(r-] G
1(107'1)’ /’? z[“‘

6)

(65)

(66)

(67)

t

b S

JEp—
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vhere the summation extends over the roots of (66). As in the previous cases,
vhen the function ¢, 18 independent of x , (67) reduces with the aid of
(26) to

T S . awn (/2] 3
w, ;t}: 2}_& T o .
'y ‘L'.,[l:.nA)aﬁ-. e ] aes 8,
B oy (68)
./ J,ft'”"f 8 dl >

the sumation being extended over the roots of (66).

Derivation of sclution uz(x,y;t)

The Laplace transform —u g, 80 is obtained in the form

4 . , s »
“w 2 =) p : z Q.f;‘:n;te T ATA—’I- Ace {x-¢)d
(e,g:p)c 2 fau) o' te,0) Eersife T 2 20l «(x-8)dt

vhere ﬂ=‘/f-o“' « It ie clear that v, (o, 45 0) is given by a

formula similar to (&4), except that Pt is replaced by -/ o (x

4
and $ | ¥ . t) has for its Laplace transforn the expression

gttdi( 4 A’ 420./'..4#

7 W;'t + .xn-,-;.j a
where 4 - \/'.:{ . As before d ( y, ¢ ) ir given by the sum of
residues of the above expression multiplied by the factor ' . Accordingly
we get

4>(7t) -1 R4 y[r “_iQ_z.a'_"w-_i'_Ea_ @ ,"-“"'

(looh)cko( ] <ee

where the summation extends over the roots of (6¢). With the aid of the last

equation the desired expression for u, (2, 4; 1) becomes
u.,(x,‘y: : - .&_.L Z[ (" “";:.5 H"Z-.L.""“;‘" o, s e-‘g.
ovmr teald)ak o T2 w L
S (69)

j: ],4;11} S F ot y

12
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the summation extending over the roots of (66).

Derivation of solution vj(x,y;t)

By analogy wvith the developments in Section 1, the Laplace transform r-,'(x,g;p)

is given by (31) where $(x;y) satisfies the conditions

]"{’p%,’"")"(',,) 0<’<¢

l éli,!,'“ﬁ").)"{(l,,) az2/,02,23, . 2 oe (70)
From (31) and (70) it follows that

L ey
vl git) s g [TFUE e s
g a oy -““}‘ . ep - Ya
VAV IEEE o

' g[ et e,

Making use of the identities (36) and (36'), (71) becomes after some obvious

transformations At
nr { e 3 t) = / o Zu‘ .‘.LL!—'JL& 8 c’ ¢
Al HAL L 7e

¥ [, (
'/‘5"‘1'“‘("5,/’(&,.,)mp_._;gyL i 72)

Derivation of solution vz(x,y;t)

Compering the initial and boundary conditions satisfied by 4 ( x vyt

wvith those satisfied by u ((x,y,t ) we conclude that the expression of
v (x,y;t) may be obtained from ( €4) by repl-cirg w (x, ¢! .

by -, (x,0;t) . Thus

ar, x A z - s : c" M{’.*) EA
L{ '?’t) %gmock)nﬁlc;]“‘ga.

-7 ¥ s
Rl ol P

- ot (73)
'}-{.d( /"c v (§,0;t-1) e

13
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where ~, ( x , 0:t) 4s obtained from (72).

In conclusion the desired solution T | x y; ! Jj  4is obtained from (63) in
conjunction with (67), (69), (72), and (73).

Section 4.

Boundary y=( radiating intc a medium at temperature ¢ (i () ; temperature
gradient ¢ (x,6¢) prescribed on y=a. Initial temperature f (x, ) .

In thie case we put

’

X, ¥ t) o+ u,(x ;U) 4 u.’([’J;I) '4‘,(1,_;;,-.’) f‘;(;)}~l’)(7‘)

vhere 1, , ,» 4~ and o5 satisfy the differentisl equation (1), and
the following 1nitia1 and boundary conditions

-

39 S acad u., (x > 2 t} = 0

t+2 })

(o-'-);—/f) «, (’;}"5!’) s ‘JCV,./I:'.) for y=0
2wt uit) s
iy w{x,4;t) = o for y-a

P S «, (x,y.; t) =0

t»0
(a,, R) u, lx,y;2) 20 Fer y-0
S’-y— w, (x, ’:;_;t)-’-‘ }9&(7(,“!‘) for y =
;‘:‘:M- "t,)z;
t a0 /V'(X'/’ ("ff’)
S';NI(I,?;Z):O for ?=Oand y=a-
A

anf(x), t) = 0

ta>0

2

a5 " lnyit) s Rl yit)s wix, g 0] For 30

()—’;-4/;(:,1,'1):0 for y=a

S —
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Derivatica of solution uj(x,y;t)

The expression of the Lapiace transform is
_~ i) - /d"/ 6 (5,4) P lyipia) ecvala-£) 4 (75)
vhere

<A g /'y -a/
/.?,.u}ru?ﬁa, r L .oed Ba = (76)

e 1
v (g, 4,2)=

vith B = o £ . . By analogy with the developments in the previous
sections, we have

as t Py - A
u,(x,v;t)=‘£‘1d§/d?/g({;t-t‘} é(,;tle L (x-§) da

vhere the expression for $ (y; tj is given by the sum of the residues
of * ¢°(y,4) vhere ¢ (?,7’*) 1s obtained from ¥ '(y;4,«/

by replacing g bty g =%
In this mammer, ve finally get

2

‘45-
u, M z * m‘q‘_i.L"
(x 7”[) {(l ¢a6)aﬁ + ,}A{»vt-

VY TS SPIE T Ae e
i

/-' /t_‘s;.' _5‘,‘ 5 (77)
’ dE/ € e g Et-1U-T 47
vhere the summation extends over the roots of
c ‘tM"C = d.b (78)
Derivation of solution u,(x,y;t)
The expression of the Lapiace transform is (29)
u,. (x,;,‘#)? ',';/ dafg'{§;¢) v yib, =) <oeax(x-§)d}
vhere _
(80)

’ . )] = Bk By ¢ Aok By
¥ (y:,=) = /‘Mﬁ.y4 L f woskfa

15
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. Proceeding as abovse, we finally get

>

( somr T ¢ ab snyl.

Ax, ;1) =
U(‘p,;) a«-—- 2(2’.A’§‘MC‘,{‘$'C}MS'

AL g
/dt/.‘ ~e-?;o(§tt) LA S

the summation being extended ov-r the roots of (78).
Derivation of solutiom vy (x,y;t) =

By analogy vith the developments in Section 1, the sxpreseion for ~; («x, y

is given by (33) vhere $(x,y) satisfies the conditiouns

[Mx.;ozu)::(‘,,) } b 2y%a

é(!,,*2-¢¢4}={(1,“':&)
With the aid of these oonditiomns, (33) ylelds
vl x, y;t) - h”;t /“; (%,7) = dt

Vi Caattes

e

dn

In view of (36) and (36'), the last equation becomes
ctey) =t [ s[5

* U -“.& ;an ~'W‘ y
mze w—d‘/e di/fli,q)mﬁ%’* dn

In the case where the initial temperature distribution is a function of y only,

the last equation becomss

q* - 2aa
!yt :,7'/?('2) dn + .:—23

16 ’

m'—":'*/”q) coe 223 dn .

(81)

&0

(82)

(83)
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Derivation of solutior v (x,y,t)

From the initial and boundary conditions satisfied by ./, ( x, y; ')

,u,,(x,,;z)itilol.rthatthoupnuiontor VA

1 ?

#;t)

obtained from that of ., (x, y; t) by replacing o, (»;t) W -=~; (x,

Thus )

PR 2]
~A . = A a € Lo e Al
z(lr’,t) a{— {IIOu.A)a.R‘ (}

-n

- S U - o

s

Q

vhere ar (ox
over the roots of (78).

Section 5.

Boundary y=O radiating into a medium at temperature @ (x;t

y=a radiating into a medium at temperature o (=z; t)
In this case ve put

X,y ) 2w (x, )+ w(x, yst) ranle, y;T) +ar(

x ?°f)

and
may be
o;t,o

(84)

,V; t) 4is obtained from (82) and where the summation extends

) ; boundary

(85)

vhere u, , u, v, and o~ satisfy the differential cquation (1) and the

folloving initial and boundary eomit.iona

P ARY { x -t) = 0
t »0 E ’}'
6_ . (= - . ; r
(a—; 4.) w, (x,y;t) Ao (x;0) °
(;7’) U (x,y,1) = o ek
P> G u_,(x";t} =0
t»0 ;
(7_A) “'x(x:y;t); 0 {0'
(;;-A)u‘l" ?;t): -}fopa(‘;ll for

17

?:o
’:d-
7:0
7:@
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pr ooy rf,(x,y;t)'-‘ {(X,})

T -0

J

W&

= 0 for ,:O and 3=z

z«» (th)'-’o

240

L5

So;",x(x.,;t):'Rn{/vi(x)y"t)‘v'( x’#;t)} fo" }:O

f,— zu;(x,w’;t)x &A{Ml(x'xﬁt)% v, x,y;f)} fer yTa

In the above hz -utbopntvoqm.l t.o-hl for reasons discussed at the end of

this section. It w3 ~ravenient to formulate the boundary condition at y=a in
tarns of hy rather than -bl in order to be able subsequently to obtain the

solution of two related problems by putting A -~ or & -0 .

Derivation of solution w(x,y;t)

Starting with the Laplace transfors
u,'(x,yzﬁl ’—,}*/ da/ o (e,8) Py pia) coem (x-6) dE

¢'(7;#,¢)= Larhp (y-a) *+ K osrkp (;-a)
: (ﬂ‘_&'l‘).‘&nﬂﬂ‘ ¢ (A -A)p coahfa

(dth ¢ - ,/f.,.‘ ) and proceedisg as in Secticn 4 we ultimately get

u le,y;t) » A S {ah ainli- )G - Coconfsr-f)ln}
i o avr Lo {20alA-0)) T ainl +{ oAk +a(h-8)s 0 ) el

(86)
* /.. / ;q/;zt) ol

e i s i 4+ i . e .

————d
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vhere the summation extinds over the roots of

(a'AAh + C')2en§ - a (B, -4)T = 9 (87)

It is readily seen that if in (86) ve put A, = oe , we obtain the formuls
(67), the summation extending over the roots of (66), which results from the
substitution A 7 s in (67). If in (66) and (87) ve put &, » ©

ve obtain the formmla (77). The amtd.on over the roots of (78) uhioh
results from the substitution A

=

Derivation of solution ﬁz(x,y;t)

Starting vith

u"(z,’;#‘):é’/da/ ?’.‘(g;*) }"(’;#,m) U‘“(l-§)d§

>

-

A ] = G oveak gy ¢ A 2Py
¥ (g, ¢,/ TA ) A A s (A AP erkfie

with p = f_ . < » Vo ultimately gst

Derivation of solution v (x,7;t)

w (x,9;0) = Ak ) C.it.:m-){-;m LIPS S
oV L {20008 80} T el 0 {222 ¢ alh-A)e 52} -8,
(e8)
L) t N )

: -.‘_‘lﬁg H,‘ S

/d§/° e e (5T et
the susmation extending over the roots of (87).
Derivation of solution va,y,g)
The expression for ., ( x, y; t)  4is obviously identical with that of

Seotion 4 and 1 therefore gim by (82).

From the boundary oonditions satisfied by ~, ( x, y; 1) 4t is clear that

~; (1,};“?-:,(x‘y;t.)o'l‘(x' y; t) (89)

19
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wvhere &, (x, y; t) is obtained from (86) by replacing w (x;T) by
-, (x,0;t) and a, ( x, y; L) is obtained from (88) by replacing

p(x;t) by -a(x, a;t) where -, ( x,0; t) “and o, (%, a;t)
are obtained from (88). .

In conclusion it should be noted that since the condition of radiation into a

medium of prescribed temperature is g—f : A(T-T,) whers h is positive and

-

‘_;;: denotes differentiation along the inwardly drawn normal, it follows
that in the above developmentis we must put hzbhl.

Part II, Heat Corductison in the Domain Dz'

As in Part I, the general sclution of the differexitial equation of heat con-
. duction which reduces to a prescribed fumction +(x,y) for =0 and satisfies

boundery conditione of the type

TR, t)=p (F t)

Lor (62) = p(F,t)

(L - 2) T(P,t) = -4plP, 1}

vhere P denotss & point on the boundary may be obteained by superposition cf

‘a solution u( x y; t) which vanishes for t=0 and sztisfies the prescribed
boundary conditions, and a solution ,- ( », y; &) which reduces to f£{x,4)
for t=0 and satisfies the homogeneous boundery conditions obteined by replacing
the second members cf the above equaticne hy 0. Moreover, a solution u(x, ¥, t)
which satisfies three nonhomogenecus boundary conditions of the above type for
the threz houndaries y=0, y=a and x=0 may svidently be obtained by superposition
of three solutions, each one of vwhich satisfies ome monhomogeneous and twoe
homogensous boundary conditions. For this reason, we shall confine ocurselves
to a pumber of typical problems involving one nonhomogenecus and two homogeneous
boundary conditions; we will not, however, attempt to exhaust all possible
combinations of boundary conditions of this type.

Casze 1.

Boundary y=0 kept at tempsrature ¢ (x,t) ; boundaries y=a and x=0 kept at
0°C. Initial temperature +(x, y) .

BExamination of (15) shows that u' ( x, y; #) the Laplace transform of the
desired solution u (x, y; t) may ' : obtained by replacing «ova (x -f) in

?

(A5) by «ov @« (x-%) -~ <ow « (x+£). Proceeding as in Section 1, Part 1,

20

———— ]
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ve finally get S

w(."};t) = E’:{é i’“"“" g:y
1

vhere S -/ . In entirely similer mauner, we obtain
— _l:‘,’f
A x - T) = 4 ‘ o
o Gy = 2 o BEE e

At

./n-{e'%y.-&%'} dg/‘f(f,q)““—:# dn

vith § =1 ., It is reedily seen that if in the expressions of w x,y;t)
and rfx,y;t) wvepat Se-1 , The resulting expressions are the solutions

appropriate to the case vhers the boundary x=0 is impervious to heat.
Case 2,

Boundary x=0 kept at temperature

;ﬁ(y,t);boumarioay-ommkoptat
0°C. Initial temperature f (=x,y)

It is reedily seen that

wlx, 3ip) = % Z c'*'ﬁ‘*-ﬂ;}/ P (nip) o~ fan Ay

meo!

vhere S, - and &, : *A. . last equation yields:

. t
u(x, y,t) s -:-: Z “.“’A}/“""‘ﬂn’z dq/¢/7;t-t}

i {")t)/iw) dt
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e ;(/A {X;t,ﬂ.)’/l = @

It is known that [ 4] for=ula (30)

¥ (x; T, B} = '

2Yrk

The solution w« (x, y; ) thus finally becomes

e
= X . ; . 4 ~n
U,(x,;;[) = Y oy ,«,,,,.TI /M—QJ dr[]

-~y

‘ R
/ y)(7;t-t) e © e 1 dr1
o

The solution & /x, y; 1) is evidently icentical with that of Case 1.

Case 3.

Radiation at x=0 into a medium at temperature ¢ ( ¥, {) ; boundaries y=0

and ym at 0°C. Imitial temperature f (x,y) .

The Laplace transform W (x, oy p) is given by

. = t. re . .
«w (x,,;#} s == Z :,A ym./"_ /o ;ﬁ/)?’#) Amﬂ‘)' d’,

wlx, y; )= ‘—42%4;/ wnf ) dy | 9 (9 -] P (757, 2.) a1

vhere
- s "o.
st
j/ e }0‘\- (‘) t) ﬂn} = c
. A+ }".s

i
— i 1
. e——— e =

. —vi
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The solution of the last integral equation is [& formula (67)

ik N - lea’
. t = £ 4 N
ym /x, 1/8,-) 2t A bt ¢ (‘ y2, dp

The expresaion for u(x,y,t) thus finally beoomes

. ~mry ‘ . mn
u_{x,’;t}:;ﬁ;Zm—T’-/. M-—;’)dr)

¢ R 7 i S - 4 lxep
'/?(’);t‘t)'c ‘ 'L%dT/c’~e ) (xr;)dp

To obtair v(x,y;t), ve make the substitution ~ :n; v s, vhere . reduces
to £(x,y) for t=0 and satisfies the condition 2% -9 vhile ~; vanishes

X

for t=0 and satisfies the condition 3‘3-}3 » Afar+a,) . It is then clear

t

o

that +, 1s identical with the solution v under Case 1, with §=-/7 , Also
the expression for v, may be obtained from the atove expression of u(x,y,t) by

replacing #ly,t) by -a, (0 y, r) where n,(x, 3, U} 1s the solution
Sust oonsidered. '

Case 4.

Radiation at y=0 into a medium at temperature ¢/x;?) ; radiation at y=a

into a medima at 0°C. Bowndary x=0 kept at 0°C or impervious to heat. Initial
temperature f(x,y).

'

of 8ection 5, Part I, by replacing «<os x ¢ x - §) by «cs a (x-§)- «esa(xt§)
inthomovhcothobomdaryx-Oinkoptathmdby et @ (x-F)+r cco x(x+t)

in the case where the boundary x=0 is impervious to heat. This leads ultimately
to

The expression of u'(x, y;4) may be obtained from that of «, ( r, y;4)

(e, yst)e AAL fo sos(-3)T, + ek T ain (1-4)8,
I SR A Lt eaR)l ainC - (ak{2+a8) 0"} coa,

dun
. g .
[ [£4 (HE eey v
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vhere {:-: or 4 :: depending on whetler the boundary x=0 is kept at O°
or is impervious to heat.

'n:o desired lolntim(x,y,t) may be obtained from (82) by replacing

g bw e ™« b HE  re S, e 4 mu depanding
on vhether the boundary x=0 is kept at 0°C or is impervious to heat.
Case 5.

Boundary x=0 kept at temperature @ [y, ¢/ ; radiation at y=0O and yw=a into
a medium at 0°C, Initial temperature f(x,y).

Let w = u U, wvhere

u, D y; ) = %(};t}

du
= 0 for =0 and r a
: y G

u’/(o)l!x't)z u, (0, }},“ =@

:—“"}iu {Auy (x,0;1)  For

¥ i io {er

¥

y
i ={A-“1(‘x°;f) for H2a
9y 0 for y <0

The solution u, (x, y;7) may ovidmuy be cbtained from the expression

for u(x,y;t) in Case 2 by replacing  scn 2z y by cea ZmZy
Thus
~n “ ~
PRI SRy

¢ o = .
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The expression for wu, ( x, y; 7] may be obtained from (86) by replacing
V’/x t;) by -u,(x, 0; t) ; similarly , («x, y,;f) may be obtsinasd
’m(“B)bprlacing @ (x;t) by -u (x, a;1) . Thus

w, (' -t} = _A;l_/i ci""";‘""’(”*}‘\‘a = r‘ym ("{'} :z.’
' g avu {1+alB-8)} T a8 +f Q’A,i\.oa{ll-f},}o 0!} ke .

-t

"f/ e w, (8,01 2)- 7 a1

»

/ / u{e'{:—l‘%ﬁ'&“'lvrfh'}

w .t) = Z G a,’_,(’,,_*f_frnl,ou*:g‘}
f » Y a,\/— r tald £} c.\,a‘u!-, C_ {a‘ﬁ."':”l(ﬂz‘ﬁ,)"{:}x_ngm

!; {1e * =
’dﬁ/ .” 33.-W } u,’(g,a,;t"t)'f.dl

wvhere ¢ : -/ and the summation extunds over the roois of
(a'Ab, + 5 ) tanT - a(A-A)C =0

By putting A,:0 or A = oe we obtain the solutions appropriate to

the case where the boundary y=a is either impervious to heat, or kept at 0°C;
similarly by putting A : 0 or A, = oo we obtain the solutions

sppropriate to the case vhere the boundary y=0 is either impervious to heat

or kept at 0°C, In the case where the radiation takes place at both boundaries
Y0 and y=a into a medium at 0°C it is necessary to put 4 - - A, , for
reasons previously explained.

To derive the solution v(x,y;t) we put ~ : o~ + &, where

Fom ar bx, g t) = f (x,y)

tee

o
S
o

l

Q-
-~

for ):0 and Yy e

ar =0 ’ for x = 0

25
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"‘-'3,4/ z Ko (x,0;t) for = 0

4 : : . t

%«;6-3,,,‘ : Aa;lx,a;t) for yaa
a3z 0 fer x = 0

The expression for -, ( x, y; '/ may be obtained from (82) by replacing

U . Ll - Ll
e by e - e . Thus

08, g ) S / { %El"se-‘:—.';‘"} dg/fq”{")) #

-r. d i °. g "ﬁ?{[
avrA! € 400 456 } 44

2
~

/ f{g,’))m-”‘—;’a- dn
s A

vith 6:" N

CO-pu'iaon of the boundary conditions satisfied by v, (x,y.t) vith those
satisfied by u) and u, leads to the conclusior that '

/v,(x,y;t}_: &,{x',;t) + G.x(x) x#;t}
vhere i, and i, are obtained from u;, and u, by replacing u3(x,O;t) and

u3(x,8;t) by v, ‘x,0;t) and ¥ (x,a;t) respectively. The remark made in con-
noction with the solution of \Ll and u, above, applies of course also to the

solution v,o(x,y;t)
Case (.

Temperature gradient ¢ ( y;t) on xw0j radiation at y=0 and y=a into a
medium at 0°C, Tnitial temperature f(x,y).

=

R e |
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In thies care w» put \k\\-ouzﬂl; vhere

Ay - Odu =

—37‘ = a—'* = 0 for x =0
a_u_. -~ A u . (’ei,tl.j (l,o;l) for 1?’-‘0
' ’ fo ) for \324
’2,_3." :{0 for ,lo
air 2 )_’u.’(r,a,;l) fcr ‘l}:o.,

The Laplace transform Cf w,( x, y; [ ie

u.’.(x,?;‘ﬁ) - -%’. i C“ ./2411,5,,?/ ;p'(r),f,) 409/9‘7, d"
vhere ﬁ‘ » AT and «

a

u»'!x, 7';?)

or
=~
P
»
~
S~
i
3
b

vhere

oo -X Oﬂ.
Y34 -~
/e o (x; 8 8) = S
‘ : A RN

It is known that the eolution of the last integral equation is [.‘.lp.12,oquat.56

-RAT = S

2 A . -‘Ik e
) Plr; 1, A ) e

7

-t

—————
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Thus the expression of ., «,y; t) becomes

wixiyst) o Y o ez [0 2y \
/° ply;t-1)- e . T al

Comparison of the boundary conditions satisfied by u and u, vith those
satisfied by W and w, in Case 5, leads to the conclusio., that the dssired
solutions b and u, are given by the exprsssions given under Czse 5 with

§ =1, '
Ths expressions of w, and u, are identical with those of Case 5 except that

now & = 1 o The derivation of the solution v(x,y,t) prcoeeds in exactly
the same manner as in Cese 5. Specifically, if we put . - .- , .

then v; is obtained from the corresponding expression undsr Case 5 by putting
=1 and oy x,p;t) = G(x,y:t) ¢ Glx, ut; vhere G

and u, are given by expressions identical with those of Case 5 except that
§ = 1 o Flpally the remerks made in connection wvith the solutions
u}, up and v, of Case 5 (rutting by = 0, hy; = = or by =-h1) apply to the same

solutions in the present case.

Part I11. Heat Conduction in the Dorsin D3'

The problems to be discussed belov are the thres-dimensional extensiona of the
problems discussed in Part I, to whieh we shall frequantly have occasion to
refer. As in Part II, we shall oonfine ocurselves to ths derivation of solutions
of problems involvin] one nonhomogeneous and one homogereous boundary condition.

The meaning of the terms "L solution and "¥* solution are the same as in Part II,

Case 1.

Boundary s=0 kept at temperature ¢ ( x,y;!) ; boundary s=a kept at 0°C,
Initial temperature £(x,y,8).

Derivetion of solution u(x,v,s)
In viev of the identity

é(x,y):-i\—// ‘f(g,v))d§dqﬁ{mx(x-{) m/s(ynz) dx df

°f

R PSS |
g
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it 1s readily seen that the expression

- o
. . aind ¥ (o -
w lx,y 3;4) = ;TZ/V{L';.HdE dn—//—.——x 2;0'

wos o (x -§) mﬂ(,-:)) doc d8

vhere Y = \/?- ¢ e B is the Laplace transform of the solution
u(x,y,s;t) vanishing for t=0 and satisfying the prescribed boundary conditionms.
The last equation ylelds

=»n
’

{ - -
u (x,y,3:0) = 7'1% d¢ d")/dT//go(gﬂ); -t}

¥ (3;7,x,p) wovx(x-F) ceafy-n) d« df

vhere
,“
_.‘f .
// 2 V(};t,rx,ﬂ)ar . _m%a;(a-;g
vith

LRI I A

By anslogy vith the developments in Section 1, Part I, we car write at oncs

-atate g%t

Fl3,7,ec,p) = ¢ c i3t
vhere
‘ﬂ _dc".t
- .é(};t)= L:’ALmM'uT—g-}'c =

——

————
5
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With the aid of this expression for ¥ ( 3; 7, «, ) and of identity
(20) the expression for u(x,y,s;t) finally becomos

0

x,y}};t) = }—l;-; Zm/dm‘--”%}//a{ dY)

mrl

/t D QeEletyen) | Allell "
o sten s e T T
]

In vievw of the identity

i

]

$(x,y,3) = ==

1 df dn d¢ // $ 1§ 7, 5)

o

g‘\\

<t ex ( x - ) //rw,é’(yq)) e 3’()—{) dee df dY

it follows that the expression

W x g ysh) s a1 /9 18.7.%)
/ﬁd(X"f) mﬁ(y“b‘) £A4C ?{?"c) dos dﬂ dY
Al t 572777 4
where, by analogy with the developments in Section 1 gart I
@(X,y,;#)vﬂm./ = -F(x,y)}} C < % < o
¢(X,z;7-}+2ma) = -flix,y,3) mo= 2 2 £3,...¢ce

iz the Laplace transform of the solution v(x,y,2;t) which vanishes for 2z=0
and z=a and reduces to f(x,y,s) for t=0. From the expmession for ~* we get

/70-0 7/ SR(XPHEIr YT
vk ysyt) = (5,8 a dng// i

v o (x-§) aeg (y-p) aov T(5-F) dedf dy .
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With the aid of the identity (20) and the above relations satisfied by
$x.y,3) the ex,ression for r(x,y,s;t) becomes

7 x-£) e (y-r)
ar | . a et) = ! - ) % Y
b m_//”i.mﬁ g 4§ dn
FADAERa T e i IR
o Mz -

In viev of the identitiee (36) and (36') the last equation finally becomes

/ ot m
N{x’zj'};t) = —_——Znﬁfa ze 4T —'L}a

Mt

’
* -

' //5 BARmaP? dn [He.n,u ain 2E8 4T

As a test of the correctnese of the laet result, it may be noted that if
f(xsy,s) becomes & function of s only, the last expression reduces, in viev of
<6) to

A lr;t) = —a)—- Z w.af.; e"Aﬁ'F'L/ F{C) sen nZ; dr
in agresment vith the result given by Carslev [ 1}, p. °°D .
Case 2.

Boundary s=0 kept at 0°C; ¢ rature gredient ¢ (x,y;t) prescribed on rm=a,
Initisl temperature 1 (x,y,s).

Perdvatiop of solutdop u(x.¥,.2it)

The counterpart of the expression w in Case 1 ie

u(x,y',),;b)f -f;ﬁ /7da: dﬂ’:;/] p(§,7;4) :j.f/,?

T -fe

Pl e By 48 dy)

)
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vhere 7 : % - x'+ ' . The last equation yields

wla,y,3; 0 = r;_

/

2,

!
'\‘\ll

t /7
atdn [ 4T f it g v
Ly

W (3T a,p) e ix-E) v fly-y) dx dp

vhere

Toat . Aent Ty
/oe yl{}.’t’«"ﬂ)dt i T.iowh Ve

vith 7 =\/ 2 rx'+r p' . By spalcgy with the developments in Section 2 Part I
we have

L Y
2

A facept mw o RImer) gl .
y[};l)a“j) = —Izj— e Z(-l) e L .ML":;':/Lﬂ_}

~mz o

A\l

With the aid of this expresaion for ¥ ( 3;1,0¢,4 ] and of the identity (20),
the expression for u(x,y,s;t) becomes

-4

/ RN is -t _Alimesitn'T
[ pig.qtn. e SRR
%5

Perivation of solutdon 4(x,y.3:%)

As in Seotion 2 Part I the solution n'(x,y,s;t) ie identical with the solution
of the problem of beet conduction in a slab of thickness 2a, whose bounding
planes 3=0 and s3=2a are kept at 0°C, initially at a temperature

defined by $(x, 5.7
4’(“9-}) = flx,y.3) for 0 <3 « a and
$(x,y,2a-3; = £1{x,y3) fo 0«3 < la

32
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Starting with the eolutiom //(x,y,7;t) in Case 1 we witimately get

" A2~ 1)'w’t
i 1) - d iy Limedmy | S
,?:}, eIl s 2a T

L RY 4

= x ~£)'e . n) a
il -L—,)-,Lv—'#
e a5 4y [ £15,9,5 ain L2ghnS g

-

Case 3.

Radiation at the boundary 3=0 into a medium at temperature ¢ (x,y;t); boundary
sma kept at 0°C, Initial temperature f(x,y,z).

The counterpart of solution u 4in Section 3 Part I is

e A/E,,n/z’-. . rh ) (3-a)
u (K;j)}l*) ”‘. .// g Jp {// ?’{S,"’Z,/‘} )/:‘/ y.d + 'ﬁtw\lxof

- o

wovelx-§) «oa B (y-n) d& dn

vhere Y = \[f ¢ o v B . The last equation yle«lds
,7' " =
(:/K’{/,f;;!/ = :’%_// d{dq/o dl // 50({,7);;’-'(1)

¥ (3T, 0,8) 40 axlx-E)acoply-9) 1~ dB

vhere nov

“opt VR ) (%-a)
[e pl3;t, 0,0)dt = ?J?a*%\;ﬁ,fc

33
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By znalogy with the developments in Section 3 Part I we have
g

Y e'“"' gl T s {:-h e e ry
flreaR)al v C2} 2oa G,

Y (30, 00,8) =

vhere the suzmation extends over the roots of the transcendental equation
T ¢« ahterl =0

Substituting the above expression of » (3. .7.x,5) in the expressinn
for u(x,y,s;t) and making use of the identity (20), we ultirately get

@ s .t) = 2 i O Mm‘l;ﬁ s
.'7)?) . n ‘_{(!,,ﬂ_)ag o QJ ch«g;
: t S AL a4t 7 . Claeg)te iy on
- o // PlE,n, 1-T- e ke df cn

vhere the summation extends over ths roots of C +anta. [ =0 .

Derivetiop of polution w/(x.¥,sit)
By analogy vith the developments in Section 3 Fert I, we put

M":}‘;};U . ”'(‘)7));1) ’ 4’3(‘,'}»};”

vhere
FTime anln,y, 350 = Fia 030
vy (X, y, e, t) = 0
It 3 . E]
o wal w, oyt
7, (;'y,a;t) = C
A o ) . - , i :

. {b; &) /L,{x'y,)lt) = Aagl x)y,O’t) for 3 4]
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Derivation of selution w, (x,y,%;t)

By analogy with the developments in Section 3 Part I if we define:

-4

q;{x'%::}f»#mo.} = F(x,y’bj 0 <23 < o

c};(x)j’g'}«r bma + a) = -F(X,y,)) m = 1+ 2

then the solution v/(x,y,s;t) becomes successively

& . . , 7Y SRRIRIT:
eyt = s E (R, T) dE ey dC J/
1 i

Caon x (X -8 ee f |y -7) eu 7(}-1_") dax df d¥

N/ - il (520
- t i
2 g(n&l)i'//é\irr)»‘;) e d§ d’) dC

"
~

8(17&”‘_ dg dr)
R 3 , _ (;:f s -VMQ.Z‘ _ (3 «“:‘r’ma}'
Liegs DT =d T

Making use of the identities (36) end (36') the last equation ultimately |

e, pt) =

(2 et 3

la

i _laer Bt
Tab

msz o

-Z]QI Baans dt dn ;/ar(g,,;!g) JUSRNEVTIE.S S

2a
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Derivation of solution gg“(x,y,z;t)

It is clear that the expression for vz(x,y,s;t) may be obtained from the
expression for u(x,y,s;t) by replacing ¢ (x,y;t) by -v (x,:,0;t).

Case 4.

Radiation at the boundary 3=0 into a medium at temperature ¢ (x,y;t);
boundary s=a impervious to heat. Initial temperature f(x,y,z).

Derivation of solution u(x,y,z;t)

The formal expression for u(x,y,z;t) is identical vith that in the previous
cases, except that y ( 30, «,p) mst be obtzined from

Y ccah Y% -a)
fi s -
/.e iy t, = A)dl T E T Y T

Proceeding as in Sectien 4 Part I we get

% y -4l
S TN Y ¢ acal- i
-"‘":I'r)),:‘y) = ]ﬁkp .z (AL . - *., =
g {ablirar) ¢ 7)) ain @,
-3y

where the summation extends over the roots of

C Zan T = ad

With the above ex;ression for VY (s;t, =« , 8 ) ve ultimately get

u ] z Lx . S 8 (12 ) C-
{‘,7,),” 1 Z{lA("uA)'r‘:}m:"

CLALL el 7 X
/ 5 CI p 2 %Z/ ?{5,’),1'1) di d’)

vhore the summation extends over the roots of the above transcendental
equations, \

Rerivation of polutiop v(x,y,2it)

As ipn the previocues case ve put
v(x,y,s;t) = 1 (xvyv'i‘)*"z(an:‘it)
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wheres

b 2 /u:,(x,y,};t) = {{x,?”}.‘

t=0

inf(x"%,};t) = 0 for 5:0 and }_:G,

b} ‘
Fom ail x,3,3;t) = 0
\
(s%j’}') il ox,y,3;0) . Al x,y,0;1) for }‘:D
%’Li(x,y.;;t)? 0 for 3=a -

Derivation of solution ~(x,y,%;t)

Ths derivation of ~;(x,y,s;t) follows very closely the developments in Section
4 Part I and those of the preceding case, If we define

dlx,y, 3 +2me) = £lx,y,3) } s - =a
s/

@(x,z’,, .+2mata) = f(x,y,a-3) =0+ 2 t oo
then
: 2 -Ealy-n)
’V}"‘,'j,};t) = m -[[e d¥ dn

/a {i [ : 3 'u:;h“: - (v %«_t;,,,af ” =

) F(E 0,0 +
/o

With the aid of (36) and (36') the last equsticn becomes

- / 7 -las :k.; B-J)‘ ¢
SRR FE LA =ry T3/ B d§ dn [ f{,n,T) dT
2 &“‘F—‘ 7 "'_‘l‘—':'l:t' ‘;—;‘
* Trart Z e aom e = ) e 4% dn
ozl
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Derivation of solution vz(x,y,z;t)

It is clear that the expression for ¥,(x,y,s;t) may be obtained from the
expression for u(x,y,s;t) by replacing #(x,y;t) by -Vl(x,y,O;t).

Cgse 5,

Boundary s=0 radiating into a medium at temperature ¢ (x,y;t); boundary s=a
radiating into a medium at 0°C. Jaitial temperature O°

As in the preceding four cases, the solution uf{x,y t;t) is given by

= t =
et s 2 f ardn | dIT//.wm;t-U

. y,{}:‘['m,ﬂ) sew ol x=F) «c9 f (y-;) de df

By analogy with the developments in Section 5 Part I the function ¥ (3;!, x,#)
is obtained from the inversion of

o _at _g{yuﬂﬁy{}-a)¢ z, 4,;n}i,3’(}—a)}
[:t VA : 1
/o/ e ¥ ipl, </ (¥'-AA Jairh Ta + (A,-H)T wnd Ta

where - l} + «’+ ' o+ The inversion of last equation yields

FR A

ST = = - ‘e g’ t
g et g) - lAf " =
¥ (3 t, a f a e - e

{ﬂ‘{OAAMV(/%):A = g@ ,/4")(/-}1) ;&} S
{20302,-30% T aenC 4 {Q'RA +a(d-R)e S coe

~

vhere the g.'s are the roots of the transcendental equation

(a'An ¢+ 8 ) tanl - a(» -4])0 = 0
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Substituting the ghove expresssion of Y in the expression of .. and making
use of (20) we ob‘tn.inx

N

Wix,u,et) Z Cofahainll-%)%n - Sasouis- %) 5.}
I I lma i24atA-A0 T aen s, 4 [alhb v ald-n)s St S,
/ t _ AT . 1 IR, - _
AT g KT & ff > T oA
'/f e g : e g T//?(§77)'t"l)‘d§ d],

e

[ 4

where the summation extends over the roots of the sbove transcendental equation.

~If in the expression for u we put » = ¢ we obtain thes solutiom appropriate
to the case where the boundary z=a is inpervious to heat, in this casze the
sumeation must of course be extended over the roots of the transcendentel equation
obtained by putting h, = 0 in the above transcendental equation. Similarly
if in the expression.of u and in the transcendental equation we put 4, = -~ 5
ve obtain the solution appropriate to the case where the boundary zw=a 13 kept
at 0°C. PFinally it should be remarked that when t“e boundary s=a actually

radiates into a medium at 0°C we must put hy=-hy both in the expression for u

as vell as in the transcendental equation; the reuson was explained at the end
- of Part I.

Case 6. %

Boundary z=a radiating into a medivm st temperatwre ¢ (x,y;t); boundary z=0
radiating into a medium at O°C. Initial temperature 0°C, {

The procedure is entirely similar totthat of Case 5. The expressicn uis
- in fact formally identical with that in' formula (A) except that the i’unction Yy
5 by snalogy with the developmeants in Section £ Part I is now obtained by the

b inversion of

o2yt : . A{Vrcoh 75 + K aind V3 }
-t dt = al 2 !
/a e ylpt.«p/ (77- 24 ok Yo + (A-B) ¥ <ok Ta

This equation yields

RT3 L afare it
v (} t o ,_1 = Z_’Zl_k .ie S

(i /,nc,-‘?-C v ap ainE T}
{’fa{}f l'”} Aw«5 1 {n.,nfn +a(i. i, )*::} Wt,.

39
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vhence ultimately

X, 4,3t = A, Sl e 30 4+ ok ainzt )
: - 4a m=i {2*&(}\.‘))’}} ?;m“‘./’v:n\ 4 {D-‘A.A; % Q(R.'R.)J';:} mtm

t_ATL | L legetyn)
'/e’-c .ér//Plf’), -1} 88 dy ,
1 .

~

the summation in the last two equations being exterded over the roota of the
same transceéndentel equation as in the previous case. If we put hlsO or h1= oo

we obtain the solutions appropriate to the cases vhoré the boundary z=0 is
either impsrvicus to heat or kept at 0°C. Finally for reasons previcucly men-
tioned the factor A, 4n the above expressions of ¥ and u must be replaced

by by, :

Accordingly the desired ‘solution ectually becomes

X,%,%t) = A i 5(("-“&5’ faﬂ“";"hdt;"’}
7 1 4> e ,((Iranlc‘um., -—(aA’i?aJ;.-§ )mc

t__&]'?,'~ Sl Btelyop? 0% =
-/e e =l %—/ (§,n;t-T) df dy
vhere the summation extends over the roots of the transcendental equation
(€' -a'd") Lam T - 2ahT = O
(In the ahove two equations we have written h yor h,.)
Case 7. ” . :

ggitial temperature f(x,y,s};boundaries £=0 and s=a radiating into a medium at
c.

We put wev. ‘"2"3 vhere

pcﬂ, v(x ?,};TI £ {(x,y’})

ts0

3%=0 for }:O and }:a.
Forv il x,p,95t) = Fim apln,y,3:1) = 0

40
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-3-"-;& PO [r + 2 ) fer 3 = C
4 F
X = - A, for = 2
Y Y
day . - 3
a—}’ = ’1./; tor } = 0
das = =
-a%'-' = - Al for 3 = Q

It is then rsadily seen that:

The fumction V) (x,y,8;t) ¢ identical vith that cf Case 4.

.

The expression for v_(x,y,s;t) be obtained from the expression of u(x,y,z;%)
of Case 5 by replaci&g @ (x,y,t by -¥ (x,y,0;t).

The expression for v.(x,y,s;t) may be obtained from the expression for u(x,y,s;t)
of Case. 6 by roplacigg @ (x,7;t) by -vl(x,y,n t). In obtaining the expressions

for v, ead v 3, it =hould be noted that hz-bl

Part IV. Heat Conduction in the Domain DB. (- ¢ x< 0, 07y <ou, 0<}<o.)

The problems to be discussed below are the three-dimensional extensions of thoee
in Part II. Once more we shall oconfine ourselves to the derivation of solutions
of probleme involving one nonhomogeneous and (in this case) two homogeneous
boundary oonditions without however attempting t- exhaust all puesible com~
binations of boundary conditions of this type. As heretofore a "u" solution
signifies a solution vanishing for t=0 and satisfying tbe prescribed boundary
oonditions; also a "v" solution denotes a solution satisfying the prescribed
initial condition, i.e., in this cass reducing to the funotion f(x,y,s) for
-t=0, and three bomogenecus boundary conditions, two of which are identical with
thoee originelly given and the third being obtained from the giver nonhomogeneous
boundary condition by replacing the second member of the equatior oxprouing it
by zero. .

The subaoquont develomments will follow quite closely the developmonts ia Part II

It 18 readily seen that from the solutions of the problems in Part III we may
derive at once tbe soluticns of oorresponding problems for the domain under

coneideration. Spsecifically by replacing = dn by / - dn
Lt Clyemit ettt
and the factor - e Mo ™ ws obtein the solution of a

problem in vhich it iz required that the boundary y=0 be kept at 0°C. Similarly

e
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e o -kl Jten) eyt
w. repllcing [ drl by [o d n and e w a Kt * e 153

we obtain tﬁn solution of a protlem in which it is required that the boundary
P50 be impervious to heat., It will therefors suffics to discuss problems in
which the boundary y=0 is neither kept at 0°C nor impervious to heat.

Case 1.

Bourdary y=0 kept at temperature p (x,3;t); boundaries s=0 and z=a kept at
0°C. Initial temperature f(x,y,s).

For a function & (x,5) defined in the domains -eo< x < =, 0 <3 ca we have

the representation

gl 3 - ;I:ZZZM);)

mz}

da [ sini ¥ dT

Jo

./'”,p,gig) wow o {x-F) dE

vhere 7. = ZZ | Prom this identity it follows that the Laplace transform
°f u(x,y,z;t) is

= o0 ra
* A 2 . : . =
u.(x,lj,b;/z‘)- = ZWU{"}/" ooc}b oo T d§
mel
o 'ﬂm ® Al
. / e ¢ (5,554) xow e (x-5) dE

.

vhers 4, = \/ % + 2+ %, o The last equation yields

oo a
2 oy i B ad w
-n—__;. amn 3;,..}/0 dor '/;va?fm < dl,
m=i

w (X y,433t)

(a)
i - [ . i e
'/ g o (x-8)dE | g [E,5;1-T) ¥ ugv,t,,af.:?,,_)d'[
- o JC

vhere

/w. Af“ +]’M

/e“ ¥ly;l,«,%)dt = e?V4

o
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It {8 known that

Slyiten) = L gL ghemnt

(See equation (31) in 4 )

Substituting the above expression of i/ 1in the expression for u and making
use of (20) we ultimately get

fl_ 0 n s Y » A
u{x,?,};!) = ;}% LMMTt /o M—ni d\/‘ df

' - ﬁm‘ﬂ":

I 2
Yyt a® \ i, P
4

It 1s obvious that the solution Wx,y,2;t) may be obtained froa the corresponding

expression in Part III Section 1 replacing [ d by [ dn
g iy ) o) e
and the factor e by P e e . Thus
),_.“'Y
Xt 1) = / fh ,oana ‘:"n'
AL 2nadt [ Y e ¢

S bl - o
J_oo® (3 44 j { = = e ; dn

Case <.

Radiation at the boundary y=0 into a medium at temperature ¢ {x,z;t); bounia-
rvies s=C and saa kept at 0°C. Initial temperature t(x,y,s).

Compering the present problem wvith that discussed in Part Il Case 3, ve are
led to the conclusion that the Laplace transform u* is given by

u’(x'?,};#) iuau?,il da/ svr ¥, Cdl

'j Sox F (L0 s @y dg

———
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It follows that u(x,y,s;t) is given formaliy by equation (i) of the previous
case, vhers nov y 1s given by

a4
£e K

~

/[ C‘M V/(VI!,"‘.I,)G{ =

vhere

o o el

Comparing vith the develomsents in Part II Case 3, we conclude

-blate32)t ea)

‘--A i L
¥ ily;l, «,%,) = ‘Az'fm—/ e’lgo;) e dp

Substituting this expression for ¥ 1in {i) and making use of {20) ws cbtain |

u (X,‘l}, :;-;t) = 2’:;;& z sen "}—Z‘l /. ,4‘4\, m__{r; dc /i. d{ '
t-wl - !A‘nx . w-‘ ."‘ 3 I
e e p(5CEUT ‘”/‘-"(W’eﬁldﬂ- !

The method of obtain’-g the so on v(x,y,s;t) is entirely similar with that ;
of Part 1] Case 3. Ve have vhere |

M‘X,val};t) = a e

' - 8a'g’t
= ] ZMM} 2

'jf:e-%:dg };”{e-%+- e-w}dt,

[ F(50,5) ain 255 o
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and wvhere vz(x,y,z;t) may be obtained from the above exprassion of u(x,y,s;t)

by replacing ¢ (x,s;t) by -vl(x,o,s,-t).

C.B. 30

Boundary y=0 kept at temperature ¢ (x,s;t); radiation at the boundaries s=0

and s=a into a medium at 0YC. Initisl tempersture f(x,y,s).

The method of deriving the solutioms u(x,y,s;t) and v(x,y,s;t) is entirely

similar to that of Case 5 Part II. PFor the derivation of the "u® solution we

ptusw ¢+, 4% vhere

wylx, 0,910 = i,y 0)

2—31 = 0 Yo }:O ard 7,=0—
Ay i :{A“’(K’V'o;t) fer }ro
%3 T 0 $er 3 :0
i—m “ A, T {o { 43 for 220
3 R u, ix,y,a;1) for 3:a

U.,(X’O,};t) = u-,(x,‘O,};t) = 0

The solution z(x,y,z-,t) may be obtained from the solution u(x,y,s;t) corre=-
sponding to Cabe 1 above,by replacing sin 272 an¢ ein =3 by

cos -=Z3 and cos —"‘-f—i- respectively. Thus:

' = = ﬂ:'ia—‘ ¢ ~nT » re
R P
: . ¥ . Aaln't
/cm.e e, Cy U et

The solution ul(x,y,r,t) may be obtained from that corresvonding to Case 5
Part 1II oy replacing

= " &
[df 21 by j/ sf ) dnp o, @ (x,y;1) by
- ‘:’t ‘ - 'inr . = '.:f .
-uy(x, y, 05t)  and e by e - e . Thss
(V3 ‘ X 1? @ . t) = R, f c‘ Id/’.‘-‘AL.T-(’ -i) g‘x = c* MI/_A’}A)K‘E,‘
.t : > )’ Anta - {),0(}'.A‘)} §~W ;’ v {G’A,)‘. * qll'\.-})')' t“} LB ;.\

B . li-?z' _l*a)' . - -
« . e L .{e ‘56 ,’» fr/ 1‘/ u!(E"-y)'(r;f'T) dn

45
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where J = 1 and wvhere the summation extends over the roots of the transcen-
dental equation

('A% + €' ) tan? - a( Ak -AIT = D

In entirely similar manner the solution nz(x,y,:,t.) may be obtained from the

solution u(x,y,z;t) in Part III, Case 6 by substitutions identical with those
for iy (x,y,3;t above, Thus:

X,,,,};t) = .._L __S.n.i_gﬂﬂﬁ_m a}'l‘u’m’%gm}

T 2ma L {2+a(B-8)} T 2inT_ + [ oAb +0(h-4)+82} e G,

./t cﬁ e.%& { é%‘-iéw.} %/_:dgjj“a(fi”’a;t_?) .

vhere J =1 end the sunmation extends over the roots of the above transcen-
dental equation.

If in the above expressions of 9 and u2 and in the transcendental equation we

put h2 =0 or hz = oo we Obtain the solution appropriate to the cases where

the boundary s=e is impervious to hest, or is bpt. at 0°C, Similarly if we put
by =0 or h) = <o  we obtain the solutions appropriate to the cases where

the boundary s=0 is impervious to heat; or is kept at 0°C,
For the derivation of ¥(x,y,s;t) we put v = V) + .V, vhers

2
)ﬂ
o Pl ‘*,y b o= flx,y,3)

—gﬂ’:o for }:O;hd 3} =

?
il x,0,3;1) =0
Fom Al x,y,3;t) =0
.‘3—;" - A, = Ao (x,y,0,t) for 330
%‘&"’; # ’Mr,(x,tj,o.;.t) for 3 =0

4b
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The expression for V. (x,y,s;t) may be derived from that of V(x,y,s;t) in Case 1

above by replacing sia _ﬂ%} and sin 2T by coe a;ir_;. &nd
a
cos —’%’l respectively. Thus:
Ra'n’t
% wo3.t) = , oamy -7
Al A gt = 2ncht e T &
A i AL " B L .
(7 g [T 5y [, 6) e 28 s
- c
vhere & =1,

Comparieon between the boundary conditions satisfied by V,(x,y,t;t) and those
satisfied by u und u, atcve, leads to the conclusion that

L (0w, 3st) = O xy, 3t 4G (x50

vhere §; 1s obtained from by replacing uj(z,.y.o.t) by vl(x,y,o,t) and vhere

G, is obtained from v, by replacing ua(x,y,:;t) by vl(x,y,n;t) vhere Vl(x,y,z;t)
is given above.

Case 4.

Temperature gradient («) (x,3;t) on y=0; boundaries s=0 and s=a kept at 0°C.
Iritial temperature f{x,y,s).

By analogy wvith the developments in Cese 1 the Laplace transform of the solution
U(x,y,z;t) 1is

P

* : = ea<t PLET ["‘. 27T
u(xsl}v‘;vf)".rlozﬂﬂ- ——2,, /. ddj‘g,o?; = at

P -ﬂ,? .
/- »ﬁ# v (§ C. p) «max-§) a3

vhere A\;«%.a“'r_’ and 7, : =0 . From the last equation we get
= 2 - ~ E e
u(x,?,g;f)—-—ﬁzu:."—%l /odc(/-dxzne‘?f—‘ d(

°C

(> T .
) amatrtras [ e (5,500 g (5,0 %, 7, 4T

47
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vhere U is obtained from the inversion of
i V t— , .l" ’ 7..
e
ﬂ %-o ate 2’

By analogy vith the expression for the function 3 of Part II, Case 6 ve may
write at once

V.{ ? YP)";LJ

3

DYCRE AT 13
¢

AN

‘;’:'/y;t—;'“’?‘“’) =

vhence ultizately

aw

-a
u(x,y,};t) = - Z P @_‘1‘1171, / o, ﬁaLQ 4z
(4

=
7o
[P

- t . lDoayl x .
[Foo [5HE M
. 5

The solution v(x,y,z;t) is identical with the solution vl(x,y,lgt) of Case 2,

If in the above expressions for u and v we replace sin ”—i’}s and sin "‘—Z’;-

by cos -%}- and oos ﬁ%f— respectively we obtain the solution appropriate
to the case vhere the boundaries s=0 and s=a are impervious to heat. Similarly

if we replace sin - and sin ——-L by sin M} and sin M

ve cbuin the solutions appropriate to tho case vhere t.he boundary s=0 is kept
at 0°C wvhile the boundary s=a is impervious to heat.

Case 5.

Temperature grad.iont @ (x,3;t) on y=©; boundaries 3=0 and z=a radiating into
» medium at 0°C. Initial temperature f(x,y,s).

The derivation of the "u” and "v®* golutionez i= zigilar o t.hat of Part II, Case

6. For the derivation of the "u® solution, we put. vy 4+ 153 vhco
‘); - ¢(1,};t/ Tor y = ¢
%? =0 for )= D and % - G

T Ty
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I3 ‘|| ‘o' :O
5 I -0
G Tor
%b'}'u‘_{ ru cor }-a
} [ ’ & 3’

The Laplace transfora of Uy Eay be obtained from that of the previous case by

i ” ‘_ ”orm 2 ” g
replacing sin —2"4- and sin __;Z by cos —= " and cos ———L—a

respectively. This leads ultimately to

a
’ " _ / ) R .. mnl
u,u,?:};a) - ice  ——m / Lvu ———la d¢
[

~m
a 1 D ) 3
- -t _ ARl vy - Bl
et 'L?"_
J e

e | e
Je

The solutions U; and u, are formally identicel with the corresponding solutions
of Case 3, except that mow & = -1, by =h, by = =b and u, is given by the
above equation.

v (5,3,1-1) 1 dT

The solution v(x,y,s;t) is given by v = 'v1 + va vhere Yy is obtained from the
corresponding solution of Case 3 by putting & = -1 and where v, is obtained in
identical manner as that described in Case 3.

Part V., Beat Condustion in the Domain DB'"

(0<x<oo,0.<1?<oo O<}<a/’

»

If in the solutions of the problems in Part IV we replace / 4§ by
oo - g o gl g T
/ ds and the factor ¢ ‘**f by e '™ 1+ e *f' ye obtain

at once the solutions of corresponding problems for the domsin under considerztiocn

for the cases vhere the boundary X=0 is impervious to heat, or kept at 0°C,

Por this reason and because of the geometric "similarity"™ between the boundaries
x=0 and y=0 it will suffice to confine ourselves to the discussion of problems
18 vhich the boundaries =0 and y=0 are neither impervious to heat nor kept at
N"C. As heretofore, it will suffice to confine ourselves to the discussion of
prolhlems involving a single nonhomogensous boundary ocondition.
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Case 1.

Soundary y«O kept st tesperature j (x,2;t); boundary 1=0 radiating into s
medium at 0°C; doundaries =@ and znu kept at 0°C, Initial tempersture £(x,¥:3).

Parivation of the °"W" solution.
In order to obtain the solution U, we put u = ul + 4, whers

u'{,)o,;;r) = Q(x,},‘:)
u-,(x;?;,!.‘,-f) = u,{x’j’a,t/ = 0
%‘%‘ = 0 for % :-0
w, (x,0,5:7) =2
w, (X, g 0it) = w fx y o) = ¢
gxu =.49H“-,L+U-,.) for x:-0

The solution “1 may be obtained from the solution u of Part IV, Case 1 by
assuming # (-x,3) = ¢ (x,3). Ve thms get

"’%’)’;I) : 'rral ZM—;’]M—K dg./ a3

L -2
e ™ & 0 (§,8:1-1) 141

The smolution u, may be obtained from the sclution 41 of Part IV, Case 2 in the
folloving manners

a. Interchange x and y end replace £ by 7; and / dg Ly / d’q

*Te

, b. In the expression thus obtained replace the factor e . = b
= = _‘&_'gl
e -}ﬁl - € e and the function @ (x,2;t) by - ul(:o,y,z,t), In this
manner ve get

u.l(x’lf,};l‘) - XM /’L:Z} j‘am mg:s dCf”d’)
mse £ o [}

2ok

133 2

t i .)) x “'a)l ) EJ:L .
-/{e%qe “"}e Comle ettt T 4T
4

e - e
J = (xtp)e dp
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where 4 = -1,
vat f solut v %2

In order to obtein V, wve put v = v+ v, wharae

T n/;(x,y,ﬁl;ii = F(x,zj,})
t=>0 '

s = 0 for L}ZO,}‘O and }:a-
By |

b = 0 for x:=0
{4«-:7; alx,y 3;1) =0 .
rm =0 ter YEOSE S8 aed. jc=a
W = pla; vnr;) for x =0

The solution Vv, may be .obtained from the corresponding solution of Part IV,

Case 2 by interchanging x and y and by replacing in the expressioz thus obtained
Eby oy, [CdE Wy j“dn and the factor o Z by

é‘iﬁ‘?' A St E '

In this manner we get N
; i - Ralm’t

e U . = L
_r,(x7},-?,t} 2nae ki

b

“{‘ 3 -Lv,—;;nﬁl G N (P 4
'/‘e' + é¢e )dr)/{e + e '}dg

/ £05,7,2) ain 2Z5 gt
with & =-l. :

The function v2 may be obtained from the expression for iil by replacing

w(o,E,¢;,t-17) by v( 0,8 ,%; -7 ) where v; is given above,

If in the above derivations we interchange x snd y we obtain the solutions
appropriate to the caze where the bourdary x=0 is kept at temperaturs ¢ (y,s;t).

The boundery y=0 radiates into a medium at 0°C and the boundaries 2=0 and z=e
are kept at 0°C,
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t:’(\“’lﬂ:{\ 1 H.~M,v‘4:,\ "
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5’;’" e U '; "4 2]

w l2 g bty 2w by agt) -

s
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'i___?l‘ D Ii?;ﬁl‘

v

»» g £ " 3 L2 3. kxai £ 7T
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Cone 2,

Boundary x=0 redietes into a medium at 09C; taspersture gradient ¢ (x,s;t)
on ysCj bounderies s=0 snd see kept at 0°C. Initial temperature f(x,y,s).

Ip order to derive the "u® solution, we put u =u) + u, vhere

’%‘f‘= 0 for x:0

5 - plxyit) For yr0
x,y,0;T) = & (x,y,0;t) = 0
% L Rl e w) For 3 =B
2x

%*;“0 for =0

y,O'ti s uw, (x 7)0.;‘” = 0

The solution Y may be obuimd from the solution u of Part IV, Case 4 by

- L L X
replacing /dF, [di and the factor e by e “ve )
s 2
Thus
u’(x',"};t)_.-_zwm#/m«ﬂ"—i ’.} dS
o y' _(,.“’ C (et s _ At
L3 “xt srt D - Y
/e {e v e j"e : plg,7;t-1) T4t
[

The solution u, is formelly d4dentical with the solution u, of the previous

cass, except that mow J =1,
In order to obtain the *v* solution we put v = v) *+ v, vhere

ﬂ‘:’vn; ’f"(ll‘j’}:r) z ‘[x,‘j,9)

e
%f:‘-“ 0 fer x =0
Sar,
3; t tour y:()

—— e ———— . ¢
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ar,

A far 1 =0

The expression for v; is identical with that of the previous case, axcept that
nov ¢4 = 1. The solution v, muy be obtained from the solution u, by replacing

W(0,5§,T:t-1)byvy (0,8 7 0-7)

If in the derivations under Cese 1 and Cass 2 we replace sin I} and

sin —’—Z—;- by oos —’-'%} and coe ﬁ*—ﬁ-—i ve obtain the solutions appropriate
to the cases vhere the bounderice s=0 and s=a are impervious to heat, the other
boundary oonditions being the same as befors. Similarly if sin “I5- and

sin AZ-gmroplucedeain m—'f/‘z—""“ and odn {2z -:ing

la

we obtain the solutions appropriate to the case vhere the boundary s=0 is kept
at 0°C wvhile the boundary s=a is izpervious to heat.
v)

Part VI HutConditioninthoDoninD; (0 = x=s2, Oﬁ‘-}ii',""’<}“’°)

Case 1.

Boundary y=O kept at temperature ¢ (x,2z;t); other boundaries kept at 0°C.
Initial temperature f(x,y,s).

Derivation of solutdca u(x,z,sgt[

By snalogy vith the developments in Part IV, Case 1, the Laplace transform of
Gis -

- ) r.ee a
“u (A, zj,,} ‘fyj = -7-12—0 e ﬁ”.ZdZ_‘L /, d? / an "_2_{ d€
v Jo

, o0 . ’ R )
4(7-&/?7:8;_’;_1./ ’!‘{§,§,b) P i A | (3‘:/ ar

-y
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The la2t equation yields im the usual marner

' aa [ ATE
i }; t) = Tra Z 2AN. o jla i ,I.,, 2en -——a-.-é- d§
\A’ m:i

oa 14 .
'[ cce §{3-0) d';’/ e (E,C:t-T) ¥ ( };T,am,r) atl

oa

where the function ¥ i obtained from the izwsrsion of

£ ot P
ir e 7,& ( ’# . 1 %, ¥ ) At - Lt fop (} -y}
./ ’ g } s B 4

In ﬂu of the deveiopments in Part I, Case 1 (equation (16), (19) and (24)) we
can write at onge

Rl UL

Yly;t,=,7) s e Py t), whera
2 byt
— . T *
$iysth « LA > o ain TEE g

With the aid of the last two equations and of the identity (20) wa ultmtely
get

2
”z mz:i

/ﬁa [~ § - ’»;1)1
j wr 2RLdy | 4T | gt e
(4 - o

_( ﬂla:ll % R-:r;‘( ) ﬁl.

% NT

Derivation of so v!{ E

As in Part III, Case 1 we have

20
wix, gyt o= =l $UE,m. 0 dTdydS

[ -Alelepteyit Z ) '
/// s woe&(x-§) M@ﬂ(‘,-q}m?(}-g, dec df d?
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whers by snalogy vith the developments thers the fumction ¢ must satisfy the
conditions

é(&+2ma,’j,9) = f’(x,y,.;)) } 6 < x = &
¢ (-x+2ma,y,3) = -¥(x,3,3) mzgl, b2 3, t oo
‘?(x %47 ?} s f(x,%,;) } 0 5%::,&
(i,.(x)—;*Z,m‘f»,}) = '{(Xa.‘é7}) mz !, 12,13, too

With the aid of identity (20) and of the last four equations, the selution
v(x,y,8;t) becomes

TR R T J /u'lt':'-d
(X, ¥, §; R 7o T3 S

/ l' Clx-k - 2«”&) _ (x,i’;.la-a)’ L
Z { - e ] r d¥
2 : J
(y-n-2md)’ _dyn- 2m &)
# - _ y n"lm-

: /"F(g,n_,‘:){L[ = - N ]} dn

anTeen

Making use of tha 1dwutities (36) end (36') the last equation ultimately becomes

S (=2
vk, s e
14 ,l},d..,- a,,@"" 7

a -—”sz Al ”’———9-; .

x:3 & -L};;—'CL .
-i’.aéou”"" /‘u/mﬂkﬂ—fdrlf £(%, q,’)e d{

29

5;\

B m s

-
Cese =.

Yesperzture gradient @ (x,s;t) on bovndary y=b; other boundaries kept 0°C.
Initla) temperature f(x,y, ’

The countecpart of the expression for u* in Case 1 is

= R Sl G B
oy gk < g ) e 2 [ar [aie 22E s

T eehlny .
[_, 4‘,'01/‘_,4’!_ 9’(§C»ﬁ) «0112(} ) dag
55
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pr——— e

vhere ,6“ = ‘/-? . a,: > T

The solution u(x,y,s;t) is formelly given by equation (A) of Case 1 where nov
y 148 obtaiped from the inversion of
/ﬂl

L] .'r

(ﬂ\lﬂ
Y ly;l, a, v) dt = Lol
/{ e /.V; 7 ldm /4«@(’0\&

As in Purt 111 Case 2 wve have
. -A!alc?"'t
¥ (y; 0, «, 7)) = % e
~ - Alsial s
. Z (-0 e = er 2 ;;/Tl
-m’o

Meking use of the zbove expression for ¥ anmd of identity (20), forsula (A)
of Case 1 ultimately ylelds

e
PR o
b - /YA . s . T (2 O
U.IX,}},};C/ = ‘—1—7"_:.1 Z Z {'I) den _..o_j acn m‘;# %’
Mt oami Y
om { -2 ‘ -,ﬂ‘T
’ . mrx_( . = : P s '—Q‘?Iu - —‘1—", -
. dadta o og d\ (f(g,s,‘f‘t,"t‘ e I
(] g - .
|
i
3 ' ]
o Rdam s A T |
vs' |
€ T d1

ut. v

As in the problem in Part III Case 2, the desired eclution is identical with
that appropriate 1o a domain identical with that of the previous case, except
that nov y ranges from O to 2b, the tw bo planes y=O0 and y=2b as well
as the boundaries ®»=) and x=a being kept at , the initial temperature

¢ (x,y,3) being defined as follows:

7’

¢{x”j’}/‘ ] L(X’i’ 3) ;or O<\} < b
$ (2,224,301 = Pl y,3) for b < y < 24
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Starting vith the expression v(x,y,s;t) of the previous case, ve ultimately get:

Ve 1 a .t = 7 - f >, TN x !am")ﬂ‘
RS AN IRk aAvwzt [ e T A S
X ~io
. a : s - -,L;_-_s)_.
2. - - or
/ R % d¢ [ pyre (—-;—;)_"J jr}{ *(E.'?,s) o af
r] Jy J. w0
Case 3.

Boundaryozwo rediates into a medium at temperature ¢ (x,2;t); other boundaries
Xept at 0°C. Init'al temperature f(x,y,s).

Derivation o () s;t

By analogy with the developments in the previous cases and in Part III Case 3,
the desired solution has for its Laplace transfora the expression

mna

sy, yip) 2 B ) e 22 [ar [ ain 228 g
o5 g J

air A oy 13 -0) . .
B, «cvh 3, 8 :}AM.AZ,,'F o (E,nip) «co 2% -C)d7

The invereion of the last squation ylelds formula (A) of Case 1 where nov ¥
is obtained from ths inversion of

/e'uy«h,;t,a“,v)dz = Soaen K f, (3-8)

! G cAf bt Ko K
The oounterpart of the formula for ¥ in Part III Case 3 1a:

~afale Yt

Ply;t,o, o) = 24hke

-

£21q

N el f)S, e ¥
{C:ethrt2r o C } zcw T

Mo

57
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Substituting the above expression of ¥ in formula (A) and making use of
identity (20) the desired solution becomes

. . 2AVE f‘; fi - omrrx T, ainlt-4) C
L t = ] e =
‘X:’j:}; ) g %'4-_’4 a {(Ifb%)5h4§,:}m§"

: e o e
. . mn , dat
/om—aidf /ﬂd(/’(ﬁ(g,g;t-t) e - e - e T
vhere the U _.'s are the roots of the iransceadental equation
g + 4&;7 ng = 0
i 6 v{ g:t)

Hoputvsvl-bvz\durc

gf

s,y 53t = fix,y,3)

tel
/U;('x,é';};i) = 0

Aar
5= = 0 for y=0
9?. 2

%’&m wvlx, y 3t 2 0
+0 o A
/U'z(x’,@-’ :};f) = 0 \

)

D biv,vra7) Afor 9.=0

.

ks
The eolution v, (x,¥,z;t) is identical with the ®v* solution of Caze 1 provided
that y nov ranges from -b to b and the initial temperature ¢ (x,y,sg satisfies
the conditions

$ (xe2mn,y,3) . = Flx,y,3) ]. D € x <o
b (-x+2ma,y,2) - -4(&,:11,5).[ pE Sl 2 20 £ o0
‘.P(x,zy_,f'rm&,}) = fix,y,3/ i ¢ £y <k

) @(x,ty,f‘fm&fﬂ-,gj = -flx,y 3) moz ) 42,83 . te

(See also Part III, Cese 3)
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Proceeding as in Case 1, we get
- - (3-53

AT

g ‘
4,({,3,};t} = m] S d(

/ £ _(x=% -204) _fxtEc2a0)

J “K et 1

1 Z‘ ¢ ) If o
l;:-i-; % J

b

(Va4

= 293 L S )‘;a
[ v (5' ;u:"&) = Zw‘:" !
/ ,r(g 7.5)4 e
‘0 t
L] S o
= (qqn-'}m}-ij). = (y—rx-"eﬁl}-?e)l -
LAY T T ekt
-8 = & ]} dn

" Making use of {36) and (36') the last equation beocomee

mz=t m=t
. y . -
/MMs.dgf, (—’ﬁ%’z aqu FEE-m € @ - ac
-] [4 oo

The function wp(x,y,s;t) may be obtained from u(x,y,s;t) by replacing @ (x,3;t)
by -vl(x,O,z,t)

Case 4.

distion at the boundary y=0 intn a madium at temneraturs & (x,5;t); boundary
y?b hnp;mmu 10 heat; boundaries x%0 and x=a x=a kept at 0°C. Initial temperature
£{x;y,s

Derivation of solutiop u(x,v,z;t

The solution u(x,y,s;t) is once more given by formula (A) of Case 1 where the
function y 1s obtained from the inversion of

T - Aok B, (3-4)
. T 7) dt CE—ie
/, e Wiy T e B ok f, & + Kok G, &

MTT
vhere 4 :z JE+ e+ 7 and &, = 25
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By analogy with the expression for % in Fart III, Case 4, we have

~ A
¥ YR P L oseu(r-4)T  a '

: . = 2-9\.;} . S‘ om £z H'. =

¥yt apn, ¥) 2 L [t ERIBH 4 o} aem €,

At :

where the [,'s are the roots of
C tan § =bh,
Substituting % in formula (A) and using (20) the desired solution becomes

-

; [ - v
3 7’}’ A Zn'éf éz_ 2 a {‘ | +£43)Fh + ‘:‘:‘} Mlgm

M=t oz
o R1L | AepT l-g
@ . - [ t - A at L4 44 d’[
g Mﬂa_{dgj dc mlE Tt 1) e e e =
[ bt o o

He'putv=v1+v2 vhere

~

P A /U;(X,y72,:-f) = f(!,y.,?

to0
-%‘:j‘ = a0 for y = C and A= £
7 P v for x=0 and x :=oa

Lim: wiln,y, 338 =0

t-0
» dn~
'd—; ==~ 0 for y =k
3an  _ e .
5‘— - J‘:(:v"'v,) {Dr ’- 0
“np = 0 for x=0 and x=za .

‘l'he_ procedure for deriviag v; 1s similar to that for the derivation of v in
Case 1, except that the function ci) must now satisfy the conditions

‘#(K*Ima.,vf,}) = Flx,y,3) L 0 =x 2 o

q-J{—x +2ma.,y’}) = —f(x,y,?)J m-.-:l,tl,t,”.. + oo
é(‘,%meb,}) = fix,y,3) 0 =y =4 é
é(.’(’lj,‘*zmﬁf}-,}) - f‘(x’)‘%:?) oz o,t,,tz,..-t”

w H
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Proceeding as .n Caes 1, we get

[

_tx -t .23ma)’ Ay E -2mal b
l - wt d / 3 & X3 _ X33 ]i dE

AR T ELP N T e 3 .|

m-ao

D

& : - ("7"44—3”“‘ - > 1»‘.1(1,"6’),
'/f(gylvl i[ € L - ]} d'l 2
[}

Ld

Making use of the identities (36) and(36') the last equation ultimately becomes

wlx,y,55t) =

/ -“mn:x ® . Ans
ad Jrkt Zw /o . a df

. - E:! r } 2 E mny
Lteas &7 dr o e ),

./oam’m_ﬂn dn / {(§7C) e—ii-.(—,g dg

The expression for v‘z(x,y,z;t) may be obtained from the expression for u(x,y,s;t)
by replacing ¢ (x,z;t) by -v(x,0,8;t).

Cass 5. .
Radiation at the boundary y=0 into a mpedium at tazperaturo p (x z,t); boundary

y=b radiating into a mediwm 0°C; boundaries x=0 and zsa-kept at 0°C, Ipdtial
temperature 0°c.

The solution u{x,y,s;t) is given by formula (A) of Case 1 where ¥ is obtained
from the inversion of ,

= -pt : Ix{/e woeh Ly -8)-hairk fy (y -8

. sl o, ¥ T = e e

/oe SO TR NEL (B + R | fo i + 2R By couh f b
vhere as before ,6sz-§*0¢'43' end o, = 2L,

(The second lonbor of the last equation is the counterpart of the corresponding
axpreseion in Pert IXI Cese 5 with h; = h and h, = -h)




-

' HAVORD Report 2159

By analogy witb the expression for ¥ in Part III Case 5 we have

o A Y f
3 - e R, s XL
24 S % -
¥'(7;Z,“m,3.) = —-—E-A. e - e
.
mer
~ {an g I = ../}:_,lz”
Sn“{k'lt pnirey g / \a i AL OY'S I‘IMJ
LU e AR)S, aen Ot () - BA - 2F8A) k0w ¥

(v - 4'A%) tam ¥ - 25AT = O

L0}

Substituting the above expression of ¥ in formula (A) of Case 1 and using (20)
the desired solution becomes .

o oA % N
u (X,'j.};t) = e L_Z_Mn 3
-~ ¥ . t .
\B!}’ s (F-1) o S el fE-1)8 ] [ b d§
z(fff/,)smMC’m* (§o = #°% - 28h) e L, J, %
LRI Ae'RT (y-gf
. rl ol r.t.TY . 4 &> i a1
/t’-"\,:/6 g (§,5;t-T) e e e e

vhere the [ 's are the roots of the above traracendental equation.

Case &,

Radiation at the boundary y=b into a medium at tempersture ¢ (x,2;t); boundary
y=0 radiating into a medium at 09C; boundaries x=0 and x=a kept at 0°C, Initial
temperature 0°c.

The solution iz given by formula (A) of Case 1 where 2// is obtained from the
inversion of

e t . A Bu ok b+ R aink f, )
e 1; ( ‘j’; )m”')?) dt = B g 5 A S
° (B, + i )acrh g, & + JAB, Lxhf ¥

{The second member of the last equation is the analogy of the corresponding
expression of Part III, Case 6 with hy = h and h, = -h)

62




| £ e T | Y

RO | e et T4 B PSR YN TR

NAVORD Report 2159
By snalogy with the expression for iy im Part III, Csze € we have

1 =
Alm  _alalev)e

- e e

{;{{:‘.b@'ﬂ, %C + SA M%Eﬁi
201 +8K)5, 2n§, + (3 - FF -26h)aee T,

vhere the T, ‘o are the roots of
(T -2} tamnl - 2225 = O

Substituting the above expreesion of ¥ in formula (A) &nd using (20) the
desired solution bernemes

wix Y, 1_;t) = ‘1IMIR Z'd""n‘ mrx ‘C@_i';mum ; C,. + bR A—tw,i-g—”'} B
& Y i S (14 8R)C ainl 4 (- ER 28R T,

/nwu—"%-g-;;/ dC/a(P(g'q;t‘T)'e e i@ o

where the T, . 's are the roots of the above transcendental equation,

Cass 7.

Initial tewperatme f(x,y,3); boundaries y=O and y=b radiating into a medium
at 0°C; boundaries x=® and x=e kept at 0°C.

The procedurs is enlirely similar to that of Part III, Case 7. We put
V=V ¢+ vy + v3 where

R AT ¢ SRR B ),

da, . = _

—aT: : 0 for %-0 and y - &
. A o= U for x =0 and x - &
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3";“ R fer ?:J
da; . : i
—’?—;- 3 I“f.,, or !_L
;—;’1 R YR Y 'j""
rr =z = 0 tor x = U and  x = a

It is then readily seen that:

The solution ¥, is identical with that of Case 4.

The expression for v, may be obtained {rom the expression of u of Cese 5 by
replasing ¢ (x,2;t) by -v;(r,0,8;t).

The wxpression for vy may be obtained from the expression of u of Case 6 by
replacing ¢ (x,%;t) by -v,(x,b;3;t).

If 4in the "u®” and "v®" solutions obtained in the preceding casos w»8& replace

sin -“Z*-  and sin —L"ﬂ—é—- by cos =1 and cos —"—‘-:—L respectively,
ve obtain the solutions appropriate to the cases uhare the boundaries x=0 and
x"a are impervious to heat. Similarly 1f we replace sin = and
stn 8% by sin [lztf: and ein Limednl respectively
G a L Qa

we obtain the soluticns appropriste to the cases where the boundary x=0 1s kept
at 0°C vhile the boundary xma 1 imperviocus to heat.

(v)

Part VII. Heat Conduction in the Domain D}

(OSX‘G,OE'é‘b,C<;<°°)
If in the solutions of the problems in Part VI ve replace J d\ . ,
- “ﬁ!g b’ :‘ll & ',0:(3! :

by /‘ dC end the factor =

ve obtain the solutions apmopriate to the czses vhere the boundery 30 1is
either impervious to heat or kept at 0°C.

It will thorofori suffice to consider here problems involving radiation at the
boundary s=0,

Case 1.

Boundary 3=0 radiating into a mediun at temperature 4 (x,y;t)s other boundaries
kept at

&

— . e e e
. o r——
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Derivatiop of polution u(x,y.zit)

For a function &

»7) defined in the rectangle 0 <x <2, € = y </ and
vanishing on the '

(x
ides of the restangls we havs ths rap-essnt ation

a 2
./o as /{(i,vl) Aon 1’—:“—5 o odem. Y dn
9

- O At

a &
= il -7'""‘} *
--/A/_:,L. T A e g # 15,75p) 4in ZFR an
r n 73
where 7, =\/ 2 (2 mn
R +( 3 ) z ( :&)
2 From the lacst equation, it follows thsat
“ 4, A T : T
. = a0 Fur s ,d. v -——J—
u.(x,r},},t) s ZL ) 5
a : &
/ o (n'Z’; d§ / AA?D.————’I d'r)/ V ;t-T) Y ! }, By e 1 )
0 - S0

vhere y ( 3t % ) ies obtained from the inversion of

/ Py ) el
e T2 P s S dat = =
o } 2 "m‘-a + A

By analogy with the expression for ¥  4in Part II, Case 3, ve bave

t
¥ ”_: 't gma 'T
I .
. Whegid )2 £ 2 == Y 1p) e dp
: ¥ 2L Y bt Jo Z

Muwm g apeney
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Substituting thie expression of Y in the formula for u{x,y,z;t) we obtain

/

— 2’4 n7 X Ay R
Uit = i L3 s S n g

i arsit

3 / . - _ nt
. . /777'L‘§ s, ML Jr S ) L -
/o are == d§ jo doris ET 0N joe - T

. I—(n.,- "‘:P _‘7tez‘
TPt AT [ e T {3tp) e

£

Derivation of solution v z;t

We put v= vy + vz whers

%'{ZL’V, (x,y,gh-f) = Flx,y,3)

,.
o
1

= feor e 0]

Cw
L N1Y

"“’i\
kY

)xn/.,’\'x’yl’}_"t}:t

dop B Al +ar)

32
Ed

The solution ;’1 may .be obtained from the solution v of Part VI, Case 1 by

o =5 -ot {3-8). _(if",)'
replacing _[” o1 by fo dé and the facter . Gzt by . B s T

The expression for V, mey be obtained from that of u by replacing ¢ (x,y;t)
by -Vl(x,y,05t).

If in the expression for u(x,y,z;t) and v(x,y,z;t) we replace sin Z—-* and
sin —ﬁ;’z—{ by cos -4’&;7—"— and cos J—’hg—-i- respectively, we obtain
the solutions appropriate to the case where the bourdaries x=0 and x=a are
impervious to heat. Similarly if ein —”—‘—;Tj"— and sin —"‘—Zi are replaced

by sin -‘3-‘1-’-’2—’;11’-4- and .LM_JLLL:LE. we obtain the solutions apprcpriate to the
&

case where the boundary x=0 1s kept at 0° while the boundary x=a is impervious
to heat. The expressioms obiainad from *u¥ solutions and "v* solutione by

replacing sin —”—"—2’% and sin -—"’—”-’%—-’(— by cos -f—’i%:’,‘- and cos —4’—"—7;,5—?——

v

or sin -{—2—”"—%9{—’7—#- end sin -Ll-—”"—f-";—"ﬂ—’:!——- have similar meaning.



HAVORD Report 2159

In conclusion it shculd be stated that the methods employed in this paper are,

not applicable to the case vhere radiation takes place at two bounding pianes
vhich are not perallel.

Nev York City
June 1951




H.
a.
G.

A,

NAVORD Report 2159

S. Cerslav "Math. Theory of Conduction of Heat in Solids®.
S. Caralgw and J. C. Joeger "COperational Metbods in Applied Mathematice®,
1

Doetsche Mathematische Zeitschuft, vol. 22 (1925).
N. Lowan "On Some Two- and Three-Dimensional Problem. in Heat Conduction®.



	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075

